The analytic solution of interfacial concentration with observed rejection ratio during dead-end membrane filtration

Prof. Albert S. Kim

Department of Civil and Environmental Engineering University of Hawai'i at Manoa 2540 Dole Street, Holmes 383, Honolulu, Hawaii 96822

NAMS 2024, May 11-16, Santa Fe, NM

Regulte

Table of Contents

- Introduction
 - Summary
 - Background
- **Theoretical**
 - Constant Flux Mode
 - Pressure-released Mode
- Results
- Concluding Remarks

Desalination 568 (2023) 117006

Contents lists available at ScienceDirect

Desalination

journal homepage: www.elsevier.com/locate/desal

Concluding Remarks

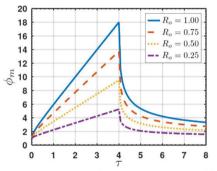
The analytic solution of interfacial concentration with observed rejection ratio during dead-end membrane filtration

Albert S. Kim

Civil and Environmental Engineering, University of Hawaii at Manoa, 2540 Dole Street, Holmes 383, Honolulu, HI 96822, United States of America

Summary

Interfacial Concentrations and Intrinsic vs. Observed Rejections



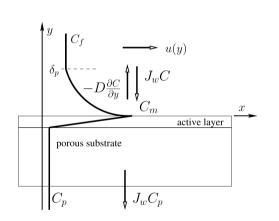
$$\begin{split} \phi_m\left(\tau \leq \tau_s\right) &= 1 + 2R_o\left[\tau + \left(\tau + \frac{1}{2}\right)\operatorname{erf}\left(\sqrt{\tau}\right) + \sqrt{\frac{\tau}{\pi}}e^{-\tau}\right] \\ \phi_m\left(\tau_s < \tau\right) &= 1 + \left[\phi_m\left(\tau_s\right) - 1\right]e^{\beta^2\left(\tau - \tau_s\right)}\operatorname{erfc}\left(\beta\sqrt{\tau - \tau_s}\right) \end{split}$$

Interfacial concentration profiles for constant-flux dead-end filtration, obtained analytically, with various observed rejection ratios

$$R_i \simeq \sqrt{R_o}$$

 The intrinsic rejection ratio can be estimated as a square root of the observed rejection.

Governing Equation and Conditions



The governing equation of dead-end filtration may be written as

Results

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial y} \left(D_0 \frac{\partial C}{\partial y} + J_w C \right) \tag{1}$$

with initial and boundary conditions of

$$C\left(y,t=0\right) = C_{f} \qquad (2)$$

$$C(y \to \infty, t) = C_f$$
 (3)

$$C(y \to \infty, t) = C_f$$
 (3)

$$D_0 \frac{\partial C_m}{\partial y} + J_w C_m(t) = J_w C_p$$
 (4)

where $C_m = C\left(t, y = 0\right)$.

(6)

(7)

(8)

Non-dimensionalization

The dimensionless governing equation is

$$\frac{\partial \phi}{\partial \tau} = \frac{\partial^2 \phi}{\partial \eta^2} + \operatorname{Pe} \lambda \frac{\partial \phi}{\partial \eta} \tag{5}$$

usina $C = C_f \phi$

$$t = T\tau$$

y = Ln

and λ is a flow parameter, such as

- regular dead-end flow ($\lambda = 1$)

- pressure release ($\lambda = 0$) • backwashing flow ($\lambda = -1$)

And, the Peclet number is defined and set as, for convenience,

$$Pe = \frac{J_wL}{D_0} = 2$$

Then, the parameters are estimated

 $L = D_0/2J_{w0} = 0.37 \,\mathrm{mm}$

$$T = 4D_0/J_{w0}^2 = 20.0 \,\mathrm{min}$$
 (11)

using

$$D = O(10^{-9}) \,\mathrm{m}^2/\mathrm{s}$$
 (12)
 $J_w = 10.0 \,\mathrm{LMH}$ (13)

(9)

(10)

Dimensionless Formalism

We rewrite the governing equation in a dimensionless form using η and τ , such as

$$\frac{\partial \phi}{\partial \tau} = \frac{\partial^2 \phi}{\partial \eta^2} + 2\lambda \frac{\partial \phi}{\partial \eta} \tag{14}$$

with the initial condition

$$\phi\left(\tau=0,\eta\right) = 1 \tag{15}$$

and boundary conditions of

$$\phi (\eta \to \infty, \tau) = 1 \quad (16)$$

$$\frac{\partial \phi_m}{\partial \eta} + 2\lambda (\phi_m - \phi_p) = 0 \quad (17)$$

where

is the dimensionless permeate concentration in terms of R_0 , and

$$\phi_m$$

 $\phi_m\left(\tau\right) = \frac{C_m\left(t\right)}{C_s}$

 $\phi_p = \frac{C_p}{C_s} = 1 - R_o$

 $\frac{\partial \phi_m}{\partial n} = \left[\frac{\partial \phi}{\partial n}\right]_{m=0}$ (20)

(18)

(19)

Solution Procedure and Analytic solution, Almost!

The Laplace transform for $\phi(\tau, \eta)$ is

$$\mathcal{L}\left[\phi\left(\tau,\eta\right)\right] = \Phi\left(p,\eta\right) \tag{21}$$

$$= \int_{0}^{\infty} e^{-p\tau} \phi\left(\tau,\eta\right) d\tau \tag{22}$$

After many hours, we obtain the particular Φ satisfying the three conditions:

$$\Phi(p,\eta) = \frac{1}{p} + 2R_o \cdot \frac{e^{-(1+\sqrt{1+p})\eta}}{p(\sqrt{1+p}-1)}$$
 (23)

Ready for an inverse Laplace transform!

This is it for the full concentration profile.

$$\phi(\tau, \eta) = 1 + 2R_o \mathcal{L}^{-1} \left[\frac{e^{-\left(1 + \sqrt{1+p}\right)\eta}}{p\left(\sqrt{1+p} - 1\right)} \right]$$
(24)

But, too difficult. Let's find an easy shortcut, i.e., the interfacial concentation at $\eta = 0$.

$$\Phi(p,\eta) = \frac{1}{p} + 2R_o \cdot \frac{e^{-\left(1+\sqrt{1+p}\right)\eta}}{p\left(\sqrt{1+p}-1\right)}$$
 (23)
$$\phi_m(\tau) = 1 + 2R_o \cdot \mathcal{L}^{-1} \left[\frac{1}{p\left(\sqrt{1+p}-1\right)} \right]$$
 (25)

Partial but Meaningful Analytic Solution

For the unsteady interfacial concentration in the constant flux mode

$$\phi_m(\tau) = \frac{1}{1} + 2R_o \left[\tau + \left(\tau + \frac{1}{2}\right) \operatorname{erf}\left(\sqrt{\tau}\right) + \sqrt{\frac{\tau}{\pi}} e^{-\tau} \right]$$
 (26)

Results

Special cases include

• A zero rejection $R_o \to 0$

$$\lim_{R_{o}\to 0}\phi_{m}\left(\tau\right)=1\tag{27}$$

• The perfect rejection $R_o \to 1$

$$\lim_{R_o \to 1} \phi_m(\tau) = (1 + 2\tau) \left[1 + \operatorname{erf}\left(\sqrt{\tau}\right) \right] + 2\sqrt{\frac{\tau}{\pi}} e^{-\tau}$$
 (28)

• For a large $\tau \gg 1$, the **asymptotic** form of ϕ_m appears

$$\phi^* = \lim_{\tau \gg 1} \phi_m \to 1 + R_o (1 + 4\tau) \tag{29}$$

Constant Flux Mode

Solution Components a Perfect Observed Rejection $R_o = 1$

$$\phi_m(\tau) = \phi_{m0} + \phi_{m1} + \phi_{m2} + \phi_{m3}$$

$$\phi_{m0} = 1$$

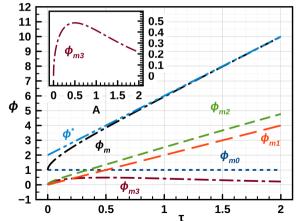
$$\phi_{m1} = 2R_o \cdot \tau$$

$$\phi_{m2} = 2R_o \cdot (\tau + \frac{1}{2}) \operatorname{erf}(\sqrt{\tau})$$

$$\phi_{m3} = 2R_o \cdot \sqrt{\frac{\tau}{\pi}} e^{-\tau}$$

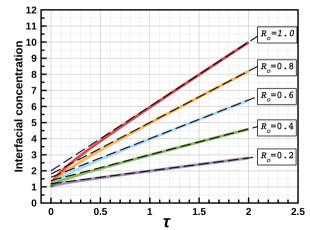
which are compared with

$$\phi^* = \lim_{\tau \gg 1} \phi_m \to 1 + R_o \left(1 + 4\tau \right)$$

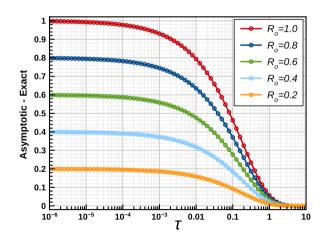


Results

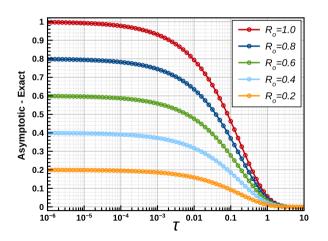
Effects of the Observed Rejection Ratio



Differences between the asymptotic and exact solutions



Differences between the asymptotic and exact solutions



With R_o from 0.2 to 1.0.

Errors between ϕ^* and ϕ_m

- 15.3% at $\tau = 0.5$
- 5.68% at $\tau = 1$.

where $\tau=1$ means the elapsed filtration time equal to the reference time, i.e., $t=T\sim 20\,\mathrm{min}$.

Decline of Interfacial Concentration after Pressure Release, $\tau > \tau_s$

(30)

The governing equation for $\lambda = 0$ is

$$\frac{\partial \phi}{\partial \tau} = \frac{\partial^2 \phi}{\partial n^2} \quad \text{for} \quad \tau \ge \tau_s$$

The far-field BC is kept valid

$$\phi\left(\eta\to\infty,\tau\geq\tau_s\right)=1\tag{31}$$

but the interfacial condition is changed from Robin to the Neumann BC, such as

$$\left[\frac{\partial \phi_m}{\partial \eta}\right]_{\eta=0} = 0$$

The analytic solution for
$$\tau > \tau_s$$
 is obtained with $\beta = (\phi_{\rm max} - 1)/R\tau$, such as

$$\varphi(\tau) = 1 + (\phi_{\text{max}} - 1) e^{\beta^2 (\tau - \tau_s)} \operatorname{erfc} \left(\beta \sqrt{\tau - \tau_s}\right)$$
(33)

compared with one in the pressing phase

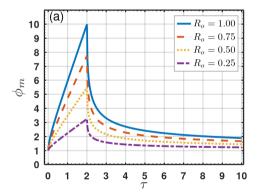
one in the pressing phase
$$\phi_m\left(\tau\right)=1+2R_o\left[\tau+\left(\tau+\tfrac{1}{2}\right)\mathrm{erf}\left(\sqrt{\tau}\right)+\sqrt{\frac{\tau}{\pi}}e^{-\frac{\tau}{4}}\right]$$

Pressure-released Mode

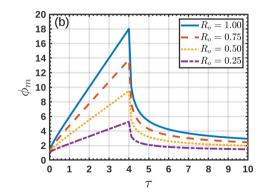
Introduction

Interfacial concentration growth and decline with τ_s

(a) for stopping time $\tau_s = 2$



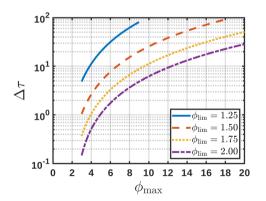
(b) for stopping time $\tau_s = 4$.



Pressure-released Mode

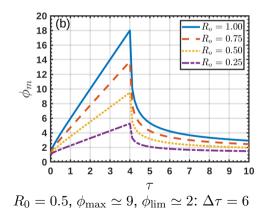
Duration $\Delta \tau$ to reach the limiting concentration $\phi_{\rm lim}$

Elapsed time regardless of R_o



(b) for stopping time $\tau_s = 4$.

Results



Observed vs. Intrinsic Rejection Ratios

Previous theoretical work

- Dresner (1964) for the constant permeate flux with $R_0 = R_i = 1.0$.
- R.J. Raridon, et al. (1966) for the constant permeate flux with finite R_i . reformulated in this work

$$\psi_m\left(\tau, R_i \to 1^-\right) = \left(1 + 2R_i^2 \tau\right) \quad \left[1 + \operatorname{erf}\left(\sqrt{\tau}\right)\right] + 2\sqrt{\frac{\tau}{\pi}} e^{-\tau} \tag{34}$$

Results

• As compared to our work with finite R_o .

$$\phi_m(\tau) = 1 + 2R_o \left[\tau + \left(\tau + \frac{1}{2}\right) \operatorname{erf}\left(\sqrt{\tau}\right) + \sqrt{\frac{\tau}{\pi}} e^{-\tau} \right]$$
 (35)

Observed vs. Intrinsic Rejection Ratios

The difference between ϕ_m and ψ_m for high rejection and large τ (> 1):

$$\phi_m - \psi_m \simeq 4 \left(R_o - R_i^2 \right) \tau \to 0 \qquad (36)$$

This logically gives us a novel relationship derived purely analytically without experiments and numerical analysis.

$$R_i \simeq \sqrt{R_o}$$
 (37)

• Any experimental verifications?

Results

Results

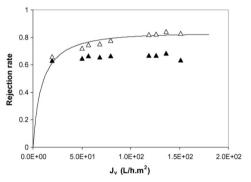


Fig. 3. Variation of the observed (Δ) and intrinsic (Δ) rejection rates with permeate flux J_V); glucose solution at $2gL^{-1}$; calculations of $R_{\rm int}$ have been carried out by considering the fluid density equals 1, $\eta = 0.89 \times 10^{-3} \, {\rm Pa} \, {\rm S}$ and $D_{\rm glucose,\infty} = 6.9 \times 10^{-10} \, {\rm m}^2/s \, [34]$.

- Bouranene et al. (2008)'s experimental observations include $R_o \simeq 0.64$ and $R_i \simeq 0.82$ for two cases of removing glucose solution of 2.9g/L and cobalt solution of 0.10g/L using polyamide NF membranes.
- Their rejection values support the theoretical approximation, such as

$$\frac{R_i}{\sqrt{R_o}} = \frac{0.82}{\sqrt{0.64}} \simeq 1.025 \tag{38}$$

Concluding Remarks

Introduction

This work developed a complete analytic solution for the interfacial concentration as a function of filtration time τ and observed rejection ratio R_{o} .

$$\phi(\tau, \eta = 0) = \phi_m(\tau) = 1 + 2R_o \left[\tau + \left(\tau + \frac{1}{2}\right) \operatorname{erf}\left(\sqrt{\tau}\right) + \sqrt{\frac{\tau}{\pi}} e^{-\tau} \right]$$

A specific relationship between the observed rejection and intrinsic rejection is mathematically derived and experimentally (indirectly) verified.

$$R_i \simeq \sqrt{R_o}$$

 \bullet A full solution of $\phi(\tau,\eta)$ is coming for the constant-flux dead-end filtration. For the constant-pressure operation, only series analytic solutions can be available. 4 D > 4 A > 4 E > 4 E > E 990

Other Analytical Work

Eur. Phys. J. E 24, 331-341 (2007) DOI 10.1140/epje/i2007-10244-x

THE EUROPEAN PHYSICAL JOURNAL E

Permeate flux inflection due to concentration polarization in crossflow membrane filtration: A novel analytic approach

Regulte

AS Kima

Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA

Other Analytical Work

www.nature.com/scientificreports

OPEN

Complete analytic solutions for convection-diffusion-reaction-source equations without using an inverse Laplace transform

Albert S. Kim@

Acknowledgment

Award Abstract (#2034824) Breaking Barriers to Participation:
A Cultural Approach to Increasing Native Hawaiian Representation in Engineering

What I learned is

From Hawaii, book your air ticket three days before your main day.

Regulte

Thank you for your attention and leave your comments at

